Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Diagn Microbiol Infect Dis ; 109(3): 116326, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38692205

ABSTRACT

Serodiagnosis methods have been used as platforms for diagnostic tests for many diseases. Due to magnetic nanoparticles' properties to quickly detach from an external magnetic field and particle size effects, these nanomaterials' functionalization allows the specific isolation of target analytes, enhancing accuracy parameters and reducing serodiagnosis time. Superparamagnetic iron oxide nanoparticles (MNPs) were synthesized and functionalized with polyethylene glycol (PEG) and then associated with the synthetic Leishmaniosis epitope. This nano-peptide antigen showed promising results. Regarding Tegumentary leishmaniasis diagnostic accuracy, the AUC was 0.8398 with sensibility 75% (95CI% 50.50 - 89.82) and specificity 87.50% (95CI% 71.93 - 95.03), and Visceral leishmaniasis accuracy study also present high performance, the AUC was 0.9258 with sensibility 87.50% (95CI% 63.98 - 97.78) and specificity 87.50% (95CI% 71.93 - 95.03). Our results demonstrate that the association of the antigen with MNPs accelerates and improves the diagnosis process. MNPs could be an important tool for enhancing serodiagnosis.

2.
Antioxidants (Basel) ; 12(8)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37627569

ABSTRACT

This study aimed to evaluate and compare the effects of treatment with gold nanoparticles (GNPs) reduced with Curcumin (Curcuma longa L.) or Açai (Euterpe oleracea) to a standard commercial treatment of the pharmacological type (Omcilon®) and an electrophysical agent (photobiomodulation) in the palatal wounds of rats. As for the in vitro assay, a cell viability test was performed to assess the toxicity of the synthesized nanoparticles. In vivo assay: 60 Wistar rats were divided into five groups (n = 12): I. Palatal Wound (PW); II. PW + Photobiomodulation (PBM); III. PW + Omcilon®; IV. PW + GNPs-Cur (0.025 mg/mL); V. PW + GNPs-Açai (0.025 mg/mL). Animals were first anesthetized, and circular lesions in the palatine mucosa were induced using a 4 mm-diameter punch. The first treatment session started 24 h after the injury and occurred daily for 5 days. The animals were euthanized, and the palatal mucosa tissue was removed for histological, biochemical, and molecular analysis. GNPs-Açai were able to significantly reduce pro-inflammatory cytokines and increase anti-inflammatory ones, reduce oxidant markers, and reduce inflammatory infiltrate while increasing the collagen area and contraction rate of the wound, along with an improved visual qualification. The present study demonstrated that the proposed therapies of GNPs synthesized greenly, thus associating their effects with those of plants, favor the tissue repair process in palatal wounds.

3.
J Environ Sci Health B ; 58(1): 1-9, 2023.
Article in English | MEDLINE | ID: mdl-36573540

ABSTRACT

The present study examined the effects of mesoporous silica nanoparticles (MSNs) on its adsorption capacity of aflatoxin B1 (AFB1). Moreover, the study evaluated the toxicity of MSNs with AFB1 using NIH3T3 cells and hemolysis test. The obtained MSNs were spherical, irregular-like in shape, having a mean size of 39.97 ± 7.85 nm and a BET surface area of 1195 m2/g. At 0.1 mg mL-1 concentration of MSN, the AFB1 adsorption capacity was 30%, which reached 70% when the MSN concentration increased to 2.0 mg mL-1. Our findings showed that AFB1 was adsorbed (∼67%) in the first few minutes on being in contact with MSNs, reaching an adsorption capacity of ∼70% after 15 min. Thereafter, the adsorption capacity remained constant in solution, demonstrating that the MSNs adsorbed toxins even beyond overnight. MSN treatment (0.5-2.0 mg mL-1) using NIH3T3 cells did not result in any reduction in cell viability. In addition, MSN treatment completely reversed the cytotoxic effect of AFB1 at all concentrations. Hemolysis test also revealed no hemolysis in MSNs evaluated alone and in those combined with AFB1. To the best of our knowledge, this study is the first to demonstrate that MSN can reduce cell toxicity produced by AFB1 due to its potential to adsorb mycotoxins.


Subject(s)
Mycotoxins , Nanoparticles , Animals , Mice , Aflatoxin B1 , Silicon Dioxide , NIH 3T3 Cells
4.
Antioxidants (Basel) ; 11(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36421443

ABSTRACT

This study aimed to investigate the effects of iontophoresis and hyaluronic acid (HA) combined with a gold nanoparticle (GNP) solution in an excisional wound model. Fifty Wistar rats (n = 10/group) were randomly assigned to the following groups: excisional wound (EW); EW + MC; EW + MC + HA; EW + MC + GNPs; and EW + MC + HA + GNPs. The animals were induced to a circular excision, and treatment started 24 h after injury with microcurrents (300 µA) containing gel with HA (0.9%) and/or GNPs (30 mg/L) in the electrodes (1 mL) for 7 days. The animals were euthanized 12 h after the last treatment application. The results demonstrate a reduction in the levels of pro-inflammatory cytokines (IFNϒ, IL-1ß, TNFα, and IL-6) in the group in which the therapies were combined, and they show increased levels of anti-inflammatory cytokines (IL-4 and IL-10) and growth factors (FGF and TGF-ß) in the EW + MC + HA and EW + MC + HA + GNPs groups. As for the levels of dichlorofluorescein (DCF) and nitrite, as well as oxidative damage (carbonyl and sulfhydryl), they decreased in the combined therapy group when compared to the control group. Regarding antioxidant defense, there was an increase in glutathione (GSH) and a decrease in superoxide dismutase (SOD) in the combined therapy group. A histological analysis showed reduced inflammatory infiltrate in the MC-treated groups and in the combination therapy group. There was an increase in the wound contraction rate in all treated groups when compared to the control group, proving that the proposed therapies are effective in the epithelial healing process. The results of this study demonstrate that the therapies in combination favor the tissue repair process more significantly than the therapies in isolation.

5.
J Biomater Appl ; 37(4): 668-682, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35705485

ABSTRACT

Objectives: This article aimed to investigate the effects of the association between photobiomodulation and hyaluronic acid incorporated in lipid nanoparticles in an epithelial lesion model in inflammatory parameters and oxidative stress. Methods: Eighty Wistar rats were randomly assigned to the following groups: epithelial lesion group (EL); EL+PBM; EL+HA; EL+SLNs; EL+SLNs-HA; EL+PBM+HA; EL+PBM+SLNs; EL+PBM+SLNs-HA. The animals were anesthetized with 4% isofluorane after shaving and induced to an epithelial lesion. Topical treatment with a gel containing HA (0.9%) and/or SLNs (10 mg/mL) and with laser irradiation occurred daily for 1 week. Results: The results showed an increase in wound contraction on the seventh day in the LE + LBM + AH-NPL group, a reduction in pro-inflammatory cytokines (IL-6, IL-1ß, and TNF-α), an increase in anti-inflammatory cytokines (IL- 4 and IL-10) and TGF-ß. The levels of pro-inflammatory cytokine IL-4 and TGF-ß also showed an increase in the LE + NPL-AH, LE + FBM + AH, LE + FBM + NPL and LE + FBM + NPL-AH groups. Regarding oxidative stress parameters, the levels of DCF and nitrite decreased in the combined therapy group when compared to the control group, as well as oxidative damage (carbonyl and sulfhydryl). In the antioxidant defense, there was an increase in GSH and SOD in the combination therapy group. Histological analysis showed a reduction in inflammatory infiltrate in the combination therapy group. The number of fibroblasts and the compaction of collagen fibers did not obtain significant responses. Conclusions: Results analyzed together showed that the combined therapy favored the repair process, and that studies can be carried out to enhance the histological analysis therapy favored the tissue repair process and that studies can be carried out to enhance the histological analysis.


Subject(s)
Hyaluronic Acid , Low-Level Light Therapy , Animals , Antioxidants/pharmacology , Collagen/pharmacology , Cytokines , Hyaluronic Acid/pharmacology , Hyaluronic Acid/therapeutic use , Interleukin-10 , Interleukin-4 , Interleukin-6 , Liposomes , Low-Level Light Therapy/methods , Nanoparticles , Nitrites/pharmacology , Rats , Rats, Wistar , Superoxide Dismutase/pharmacology , Transforming Growth Factor beta/pharmacology , Tumor Necrosis Factor-alpha , Wound Healing
6.
Eur J Pharmacol ; 923: 174934, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35367420

ABSTRACT

Leishmaniasis is a neglected tropical disease that has a wide spectrum of clinical manifestations, ranging from visceral to cutaneous, with millions of new cases and thousands of deaths notified every year. The severity of the disease and its various clinical forms are determined by the species of the causative agent, Leishmania, as well as the host's immune response. Major challenges still exist in the diagnosis and treatment of leishmaniasis, and there is no vaccine available to prevent this disease in humans. Nanotechnology has emerged as a promising tool in a variety of fields. In this review, we highlight the main and most recent advances in nanomedicine to improve the diagnosis and treatment, as well as for the development of vaccines, for leishmaniasis. Nanomaterials are nanometric in size and can be produced by a variety of materials, including lipids, polymers, ceramics, and metals, with varying structures and morphologies. Nanotechnology can be used as biosensors to detect antibodies or antigens, thus improving the sensitivity and specificity of such immunological and molecular diagnostic tests. While in treatment, nanomaterials can act as drug carriers or, be used directly, to reduce any toxic effects of drug compounds to the host and to be more selective towards the parasite. Furthermore, preclinical studies show that different nanomaterials can carry different Leishmania antigens, or even act as adjuvants to improve a Th1 immune response in an attempt to produce an effective vaccine.


Subject(s)
Leishmania , Leishmaniasis , Vaccines , Drug Carriers , Humans , Leishmaniasis/diagnosis , Leishmaniasis/drug therapy , Leishmaniasis/prevention & control , Nanomedicine , Nanotechnology , Vaccines/pharmacology
7.
Environ Sci Pollut Res Int ; 29(27): 41247-41260, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35089511

ABSTRACT

Preservative treatments increase the durability of wood, and one of the alternative treatments involves the use of chromated copper arsenate (CCA). Due to the toxicity of CCA, the disposal of CCA-treated wood residues is problematic, and burning is considered to provide a solution. The ecotoxicological potential of ash can be high when these components are toxic and mutagenic. The aim of this study was to evaluate the toxicity and genotoxicity of bottom ash leachates originating from CCA-treated wood burning. Physical-chemical analysis of the leachates revealed that in treated wood ashes leachate (CCA-TWBAL), the contents of arsenic and chromium were 59.45 mg.L-1 and 54.28 mg.L-1, respectively. In untreated wood ashes leachate (UWBAL), these contents were 0.70 mg.L-1 and 0.30 mg.L-1, respectively. CCA-TWBAL caused significant toxicity in Lactuca sativa, Allium cepa, and microcrustacean Artemia spp. (LC50 = 12.12 mg.mL-1). Comet assay analyses using NIH3T3 cells revealed that concentrations ranging from 1.0 and 2.5 mg.mL-1 increase the damage frequency (DF) and damage index (DI). According to MTT assay results, CCA-TWBAL at concentrations as low as 1 mg.mL-1 caused a significant decrease in cellular viability. Hemolysis assay analyses suggest that the arsenic and chromium leachate contents are important for the ecotoxic, cytotoxic, and genotoxic effects of CCA-TWBAL.


Subject(s)
Antineoplastic Agents , Arsenic , Refuse Disposal , Animals , Arsenates/chemistry , Arsenates/toxicity , Arsenic/analysis , Chromium/analysis , Copper/chemistry , DNA Damage , Mice , NIH 3T3 Cells , Refuse Disposal/methods , Wood/chemistry
8.
ACS Appl Nano Mater ; 5(1): 642-653, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35098045

ABSTRACT

The COVID-19 pandemic, caused by the fast transmission and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently considered a serious health problem, requiring an effective strategy to contain SARS-CoV-2 dissemination. For this purpose, epitopes of the SARS-CoV-2 spike (S) and sucleocapsid (N) proteins were identified by bioinformatics tools, and peptides that mimic these epitopes were chemically synthesized and then conjugated to superparamagnetic nanoparticles (SPMNPs). Three peptides from S protein and three from N protein were used as antigens in a conventional enzyme-linked immunosorbent assay (ELISA) against serum samples from COVID-19-positive patients, or from healthy donors, collected before the pandemic. Three peptides were effective as antigens in conventional peptide-based ELISA, achieving 100% sensitivity and specificity, with high accuracy. The best-performing peptides, p2pS, p1pN, and p3pN, were associated with superparamagnetic nanoparticles (SPMNPs) and were used to perform nanomagnetic peptide-based ELISA. The p2pS-SPMNP conjugate presented 100% sensitivity and specificity and excellent accuracy (area under the curve (AUC) = 1.0). However, p1pN and p3pN peptides, when conjugated to SPMNPs, did not preserve the capacity to differentiate positive sera from negative sera in all tested samples, yet both presented sensitivity and specificity above 80% and high accuracy, AUC > 0.9. We obtained three peptides as advantageous antigens for serodiagnosis. These peptides, especially p2pS, showed promising results in a nanomagnetic peptide-based ELISA and may be suitable as a precoated antigen for commercial purposes, which would accelerate the diagnosis process.

9.
J Biomed Mater Res B Appl Biomater ; 110(3): 702-711, 2022 03.
Article in English | MEDLINE | ID: mdl-34619018

ABSTRACT

Poly(thioether-ester) (PTEe) nanoparticles obtained by thiol-ene polymerization have received attention of many researchers due to several advantages, including, biocompatibility and biodegradability. The search for new nanomaterials requires toxicity studies to assess potential toxic effects of their administration. Therefore, the aim of this study was to evaluate the in vivo acute toxicity of PTEe and poly(thioether-ester)-coated magnetic nanoparticles prepared by thiol-ene polymerization in miniemulsion. These nanoparticles presented a mean size of approximately 120 nm, spherical morphology, and negative surface charge. Doses of 40 mg/kg were administered intraperitoneally to Swiss mice and nociceptive, behavioral and biochemical parameters were investigated in five different organs. None of the nanoparticles led to any alterations in the nociceptive and behavioral responses. Biochemical alterations were observed in liver, decreasing the sulfhydryl and glutathione (GSH) levels, suggesting the dependence of the GSH metabolism in the elimination of the nanoparticles. In general, both nanoparticle types did not cause disturbances in biochemical parameters analyzed in others organs. These results suggest that both nanoparticle types did not induce acute toxicity to the different organs evaluated, reinforcing the biocompatibility of PTEe nanoparticles synthetized by thiol-ene polymerization.


Subject(s)
Nanoparticles , Sulfides , Animals , Esters , Magnetic Iron Oxide Nanoparticles , Mice , Nanoparticles/toxicity , Polymerization , Sulfhydryl Compounds , Sulfides/toxicity
10.
J Biomed Mater Res B Appl Biomater ; 110(6): 1234-1244, 2022 06.
Article in English | MEDLINE | ID: mdl-34894049

ABSTRACT

Inhalation of harmful particles appears as a primary factor for the onset and establishment of chronic obstructive pulmonary disease (COPD). Cigarette smoke acutely promotes an exacerbated inflammatory response with oxidative stress induction with DNA damage. Administration of Gold Nanoparticles (GNPs) with 20 nm in different concentrations can revert damages caused by external aggravations. The effects of GNPs in a COPD process have not been observed until now. The objective of this work was to evaluate the therapeutic effects of intranasal administration of different doses of GNPs after acute exposure to industrial cigarette smoke. Thirty male Swiss mice were randomly divided into five groups: Sham; cigarette smoke (CS); CS + GNPs 2.5 mg/L; CS + GNPs 7.5 mg/L and CS + GNPs 22.5 mg/L. The animals were exposed to the commercial cigarette with filter in an acrylic inhalation chamber and treated with intranasal GNPs for five consecutive days. The results demonstrate that exposure to CS causes an increase in inflammatory cytokines, histological changes, oxidative and nitrosive damage in the lung, as well as increased damage to the DNA of liver cells, blood plasma and lung. Among the three doses of GNPs (2.5, 7.5, and 22.5 mg/L) used, the highest dose had better anti-inflammatory effects. However, GNPs at a dose of 7.5 mg/L showed better efficacies in reducing ROS formation, alveolar diameter, and the number of inflammatory cells in histology, in addition to significantly reduced rate of DNA damage in lung cells without additional systemic genotoxicity already caused by cigarette smoke.


Subject(s)
Cigarette Smoking , Metal Nanoparticles , Pulmonary Disease, Chronic Obstructive , Administration, Intranasal , Animals , Bronchoalveolar Lavage Fluid , Gold/pharmacology , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/pathology , Nicotiana
11.
J Nanosci Nanotechnol ; 21(11): 5493-5498, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-33980359

ABSTRACT

Nanomaterials, such as magnetic nanoparticles have attracted significant attention of medical area due to their capacity to improve the performance of immunoassays. Therefore the aim of this work was to study the bovine serum albumin (BSA) conjugation in superparamagnetic (MNPs)/poly(methyl methacrylate) (PMMA) nanoparticles with further characterization and application in enzyme-linked immunosorbent (ELISA) assay. The successful conjugation of BSA in MNPs- PMMA nanoparticles was confirmed by several techniques, including light scattering, zeta potential, transmission electron microscopy (TEM) and Lowry protein quantification assay. The superparamagnetic properties were confirmed by vibrating sample magnetometer. BSA conjugated MNPs-PMMA nanoparticles presented higher interactions with antibody than free BSA. The BSA + MNPs-PMMA nanoparticles (magnetic ELISA assay) reduced the time and increased the sensibility of traditional ELISA assay, reinforcing the idea that the use these nanomaterials are an excellent alternative for the immunoassays field.


Subject(s)
Nanoparticles , Serum Albumin, Bovine , Enzyme-Linked Immunosorbent Assay , Magnetic Iron Oxide Nanoparticles , Magnetic Phenomena , Polymethyl Methacrylate
12.
Colloids Surf B Biointerfaces ; 201: 111608, 2021 May.
Article in English | MEDLINE | ID: mdl-33618084

ABSTRACT

Hypercholesterolemia has been linked to neurodegenerative disease development. Previously others and we demonstrated that high levels of plasma cholesterol-induced memory impairments and depressive-like behavior in mice. More recently, some evidence reported that a hypercholesterolemic diet led to motor alterations in rodents. Peripheral inflammation, blood-brain barrier (BBB) dysfunction, and neuroinflammation seem to be the connective factors between hypercholesterolemia and brain disorders. Herein, we aimed to investigate whether treatment with gold nanoparticles (GNPs) can prevent the inflammation, BBB disruption, and behavioral changes related to neurodegenerative diseases and depression, induced by hypercholesterolemic diet intake in mice. Adult Swiss mice were fed a standard or a high cholesterol diet for eight weeks and concomitantly treated with either vehicle or GNPs by the oral route. At the end of treatments, mice were subjected to behavioral tests. After that, the blood, liver, and brain structures were collected for biochemical analysis. The high cholesterol diet-induced an increase in the plasma cholesterol levels and body weight of mice, which were not modified by GNPs treatment. Hypercholesterolemia was associated with enhanced liver tumor necrosis factor- α (TNF-α), BBB dysfunction in the hippocampus and olfactory bulb, memory impairment, cataleptic posture, and depressive-like behavior. Notably, GNPs administration attenuated liver inflammation, BBB dysfunction, and improved behavioral and memory deficits in hypercholesterolemic mice. Also, GNPs increased mitochondrial complex I activity in the prefrontal cortex of mice. It is worth highlight that GNPs' administration did not cause toxic effects in the liver and kidney of mice. Overall, our results indicated that GNPs treatment potentially mitigated peripheral, brain, and memory impairments related to hypercholesterolemia.


Subject(s)
Hypercholesterolemia , Metal Nanoparticles , Neurodegenerative Diseases , Animals , Gold , Hypercholesterolemia/drug therapy , Mice , Nanotechnology
13.
Mater Sci Eng C Mater Biol Appl ; 120: 111651, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33545819

ABSTRACT

The use of nanoparticles as drug delivery systems to simultaneously carry several therapeutic agents is an attractive idea to create new synergic treatments and to develop the next generation of cancer therapies. Therefore, the goal of this study was the simultaneous encapsulation of a hydrophilic drug, sodium diethyldithiocarbamate (DETC), and a hydrophobic drug, 4-nitrochalcone (4NC), in beeswax nanoparticles (BNs) to evaluate the in vitro synergic activity of this combination against melanoma (B16F10) cells. BNs were prepared by water/oil/water double emulsion in the absence of organic solvents. Transmission electron microscopy imaging and dynamic light scattering analyses indicated the formation of BNs with a semispherical shape, average diameter below 250 nm, relatively narrow distributions, and negative zeta potential. The double emulsion technique proved to be effective for the simultaneous encapsulation of DETC and 4NC with efficiencies of 86.2% and 98.7%, respectively, and this encapsulation did not affect the physicochemical properties of the BNs. DETC and 4NC loaded in BNs exhibited a higher cytotoxicity toward B16F10 cells than free 4NC and DETC. This simultaneous encapsulation led to a synergic effect of DETC and 4NC on B16F10 cells, decreasing the cell viability from 46% (DETC BNs) and 54% (4NC BNs) to 64% (DETC+4NC BNs). Therefore, the IC50 of DETC+4NC was also lower than that of either when individually encapsulated, and that of free DETC or 4NC. Therefore, DETC and 4NC were efficiently simultaneously encapsulated in BNs and this drug combination was able to generate an in vitro synergic therapeutic effect on B16F10 cells.


Subject(s)
Melanoma , Nanoparticles , Ditiocarb , Drug Carriers , Humans , Particle Size , Waxes
14.
Colloids Surf B Biointerfaces ; 197: 111434, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33166932

ABSTRACT

There has been considerable interest in the development of novel photosensitisers for photodynamic therapy (PDT). The use of liposomes as drug delivery systems containing simultaneously two or more drugs is an attractive idea to create a new platform for PDT application. Therefore, the aim of this study was to evaluate the synergistic effect of diethyldithiocarbamate (DETC) and zinc phthalocyanine (PDT) co-encapsulated in liposomes. The reverse-phase evaporation method resulted in the successful encapsulation of DETC and ZnPc in liposomes, with encapsulation efficiencies above 85 %, mean size of 308 nm, and zeta potential of - 36 mV. The co-encapsulation decreased the cytotoxic effects in mouse embryo fibroblast (NIH3T3) cells and inhibited damage to human erythrocytes compared to free DETC + ZnPc. In addition, both the free drugs and co-encapsulated ones promoted more pronounced phototoxic effects on human breast cancer cells (MDA-MB231) compared to treatment with ZnPc alone. This synergistic effect was determined by DETC-induced decreases in the antioxidant enzyme activity of superoxide dismutase (SOD) and glutathione (GSH).


Subject(s)
Breast Neoplasms , Organometallic Compounds , Photochemotherapy , Animals , Ditiocarb/pharmacology , Female , Humans , Indoles , Isoindoles , Liposomes , Mice , NIH 3T3 Cells , Organometallic Compounds/pharmacology , Photosensitizing Agents/pharmacology , Zinc Compounds
15.
Appl Microbiol Biotechnol ; 104(20): 8595-8605, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32875366

ABSTRACT

Mannosylerythritol lipids (MEL) are glycolipids mainly produced by pseudo-yeasts. These molecules present remarkable biological activities widely explored in many fields, including medicine, pharmaceuticals, and cosmetics. This review presents the main biological activity of MEL on the HL60, K562, B16, PC12, and skin cells. There is strong evidence that MEL changes the levels of glycosphingolipids of HL-60 lineage, which induce differentiation into granulocytic cells. Regarding B16 cells, MEL can trigger both apoptosis (10 µM) and cell differentiation (5 µM), in which the MEL concentration is related to each metabolic pathway. MEL can also trigger differentiation in PC12 cells due to the increase in the GalCer content. In this specific case, the effects are transient, and the differentiated cells are unstable and tend to apoptosis. MEL-B can particularly maintain skin hydration and moisture due to their self-assembled structures that resemble the tissue cells. Moreover, MEL-B repair aquaporin expression in the HaCaT keratinocytes damaged with UVA irradiation, whereas MEL-C suppresses the expression of COX-2 protein in fibroblasts, indicating that these glycolipids activate the cellular antioxidant mechanism. Recent findings denoted the anti-melanogenic activity of MEL since they suppress tyrosinase enzyme at mRNA levels in B16 and NHMs cells. MEL act effectively on mammalian cells; however, there is no clear pattern of their metabolic effects. Also, gene expression levels seem to be related to two main factors: chemical structure and concentration. However, the specific signaling cascades that are induced by MEL remain inconclusive. Thus, further investigations are vital to understanding these mechanisms clearly. KEY POINTS: • The four MEL homologs promote different biological responses in mammalian cells. • MEL modifies the pattern of glycosphingolipids in the plasma membrane of tumor cells. • Activation/deactivation of phosphorylation of serine/threonine kinase proteins.


Subject(s)
Glycolipids , Glycosphingolipids , Animals , Cell Differentiation , Melanins , Phosphorylation , Rats , Surface-Active Agents
16.
Colloids Surf B Biointerfaces ; 196: 111302, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32777662

ABSTRACT

Parkinson's disease (PD) is recognized as the second most common neurodegenerative disorder, after Alzheimer's disease. Reserpine administration to animals has been suggested as a PD model based on the effects of this monoamine-depleting agent on motor activity. Studies show that gold nanoparticles (GNPs) are effective for treating neurodegenerative diseases when used at certain concentrations. The objective of the present study was to evaluate the effects of GNPs administration under behavioral and oxidative stress conditions in an experimental model of PD. Fourty male C57BL/6 mice (20-30 g) were used, The animals were divided into four groups (N = 6): Sham; Sham and GNPs; Reserpine; Reserpine and GNPs. Three doses at the concentration of 0.25 mg/kg reserpine were administered subcutaneously at 48 h intervals. Treatment with GNPs was administered with 2.5 mg/kg GNPs (20 nm) for five consecutive days. Our results showed the therapeutic potential of GNPs, where the parameters observed in behavioral tests and oxidative stress were reverted in GNP-treated mice. It also partially improved neurotrophic factors, which are necessary for the survival of neurons. GNPs reversed the symptoms of PD caused by the use of alkaline reserpine in C57BL/6 mice, especially without toxicity. The results of this study suggest that GNPs could have clinical potential as an inhibitor of inflammation and oxidative stress in the CNS, thereby alleviating the secondary neurodegenerative processes and neuronal cell death caused by reserpine. These beneficial effects of GNPs provide support for new analyses to better understanding in the process of PD degeneration.


Subject(s)
Metal Nanoparticles , Parkinson Disease , Animals , Disease Models, Animal , Gold , Male , Mice , Mice, Inbred C57BL , Oxidative Stress , Parkinson Disease/drug therapy , Particle Size
17.
Eur J Pharmacol ; 884: 173392, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32735985

ABSTRACT

The Leishmaniasis treatment currently available involves some difficulties, such as high toxicity, variable efficacy, high cost, therefore, it is crucial to search for new therapeutic alternatives. Over the past few years, research on new drugs has focused on the use of natural compounds such as chalcones and nanotechnology. In this context, this research aimed at assessing the in vitro leishmanicidal activity of free 4-nitrochalcone (4NC) on promastigotes and encapsulated 4NC on L. amazonensis-infected macrophages, as well as their action mechanisms. Free 4NC was able to reduce the viability of promastigotes, induce reactive oxygen species production, decrease mitochondrial membrane potential, increase plasma membrane permeability, and expose phosphatidylserine, in addition to altering the morphology and lowering parasite cellular volume. Treatment containing encapsulated 4NC in beeswax-copaiba oil nanoparticles (4NC-beeswax-CO Nps) did not alter the viability of macrophages. Furthermore, 4NC-beeswax-CO Nps reduced the percentage of infected macrophages and the number of amastigotes per macrophages, increasing the production of reactive oxygen species, NO, TNF-α, and IL-10. Therefore, free 4NC proved to exert anti-promastigote effect, while 4NC-beeswax-CO Nps showed a leishmanicidal effect on L. amazonensis-infected macrophages by activating the macrophage microbicidal machinery.


Subject(s)
Chalcones/pharmacology , Drug Carriers , Fabaceae , Leishmania/drug effects , Leishmaniasis, Cutaneous/drug therapy , Macrophages, Peritoneal/drug effects , Nanoparticles , Plant Oils/chemistry , Trypanocidal Agents/pharmacology , Waxes/chemistry , Animals , Apoptosis/drug effects , Chalcones/chemistry , Cytokines/metabolism , Disease Models, Animal , Drug Compounding , Fabaceae/chemistry , Inflammation Mediators/metabolism , Leishmania/growth & development , Leishmania/ultrastructure , Leishmaniasis, Cutaneous/metabolism , Leishmaniasis, Cutaneous/parasitology , Macrophage Activation/drug effects , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/parasitology , Mice, Inbred BALB C , Nitric Oxide/metabolism , Plant Oils/isolation & purification , Reactive Oxygen Species/metabolism , Trypanocidal Agents/chemistry
18.
J Drug Target ; 28(10): 1110-1123, 2020 12.
Article in English | MEDLINE | ID: mdl-32546016

ABSTRACT

The use of compounds from natural or synthetic sources and nanotechnology may represent an alternative to develop new drugs for the leishmaniasis treatment. DETC is an inhibitor of the SOD1 enzyme, which leads to increased ROS production, important for the elimination of Leishmania. Thus, our objective was to assess the leishmanicidal in vitro effect of free Diethydithiocarbamate (DETC) and DETC loaded in beeswax-copaiba oil nanoparticles (DETC-Beeswax-CO Nps) on L. amazonensis forms and elucidate the possible mechanisms involved in the parasite death. DETC-Beeswax-CO Nps presented size below 200 nm, spherical morphology, negative zeta potential, and high encapsulation efficiency. Free DETC reduced the viability of promastigotes and increase ROS production, lower the mitochondrial membrane potential, cause phosphatidylserine exposure, and enhance plasma membrane permeability, in addition to promoting morphological changes in the parasite. Free DETC proved toxic in the assessment of toxicity to murine macrophages, however, the encapsulation of this compound was able to reduce these toxic effects on macrophages. DETC-Beeswax-CO Nps exerted anti-amastigote effect by enhancing the production of ROS, superoxide anion, TNF-α, IL-6, and reduced IL-10 in macrophages. Therefore, free DETC induces antipromastigote effect by apoptosis-like; and DETC-Beeswax-CO Nps exerted anti-leishmanial effect due to pro-oxidant and pro-inflammatory response.


Subject(s)
Ditiocarb/pharmacology , Leishmania/drug effects , Macrophages/drug effects , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Animals , Apoptosis/drug effects , Ditiocarb/administration & dosage , Mice, Inbred BALB C , Plant Preparations/chemistry , Surface Properties , Waxes/chemistry
19.
J Biomater Sci Polym Ed ; 31(15): 1895-1911, 2020 10.
Article in English | MEDLINE | ID: mdl-32552460

ABSTRACT

The combination of hyperthermia and chemotherapy has a potential synergic effect in antitumor activity. The development of new biocompatible and biodegradable polymers to simultaneously encapsulate magnetic nanoparticles (MNPs) and antitumoral drugs offer new cancer treatment opportunities. Here, biodegradable and biocompatible poly(thioether-ester) (PTEe) was used to encapsulate MNPs and 4-nitrochalcone (4NC) using miniemulsification and solvent evaporation. The resulting hybrid particles (MNPs-4NC-PTEe) had nanometer-scale diameters, spherical morphology, negative surface charge, high encapsulation efficiency, and superparamagnetic properties. Results showed that 4NC release occurred through diffusion. Free 4NC and MNPs + 4NC-PTEe did not have any cytotoxic effect on erythrocytes and mouse embryonic fibroblast (NIH3T3) cells. 4NC antitumor activity was verified on human cervical cancer (HeLa) and melanoma (B16F10) cells. Cellular uptake of MNPs + 4NC-PTEe nanoparticles was higher in HeLa cells compared to B16F10 and NIH3T3 cells. The hyperthermia application (115 kHz-500 Oe) potentiated the 4NC effects on HeLa and B16F10 cells when MNPs + 4NC-PTEe nanoparticles were used, indicating more effective antitumor activity. We concluded that the use of MNPs + 4NC-PTEe nanoparticles associated with hyperthermia is a promising form of treatment for some types of cancers.


Subject(s)
Hyperthermia, Induced , Magnetite Nanoparticles , Nanoparticles , Animals , Esters , Fibroblasts , HeLa Cells , Humans , Hyperthermia , Mice , NIH 3T3 Cells , Sulfides
20.
Colloids Surf B Biointerfaces ; 192: 111012, 2020 Apr 18.
Article in English | MEDLINE | ID: mdl-32388028

ABSTRACT

The tissue response to acute myocardial infarction (AMI) is key to avoiding heart complications due to inflammation, mitochondrial dysfunction, and oxidative stress. Antioxidant and anti-inflammatory agents can minimize the effects of AMI. This study investigated the role of 2-methoxy-isobutyl-isonitrile (MIBI)-associated gold nanoparticles (AuNP) on reperfusion injury after ischemia and its effect on cardiac remodeling in an experimental AMI model. Three-month-old Wistar rats were subjected to a temporary blockade of the anterior descending artery for 30 min followed by reperfusion after 24 h and 7 days by intraventricularly administering 0.4, 1.3, and 3 mg/kg AuNP-MIBI. The cardiac toxicity and renal and hepatic function levels were determined, and the infarct and peri-infarct regions were surgically removed for histopathology, analysis of inflammation from oxidative stress, and echocardiography. MIBI-conjugated AuNP promoted changes in oxidative stress and inflammation depending on the concentrations used, suggesting promising applicability for therapeutic purposes.

SELECTION OF CITATIONS
SEARCH DETAIL
...